SUNFLOWER LEMMA Styopa Zharkov

Definition: A collection of sets $\{Z_1, \ldots, Z_p\}$ is called a *sunflower* if there exists a set Z (which we call the *core*) such that for any $i \neq j$, we have $Z_i \cap Z_j = Z$. The sets Z_i are called the *petals* of the sunflower¹. Equivalently, every element either belongs to none, one, or all of the sets in the collection.

Note that a collection where all sets are disjoint from each other is also a sunflower with an empty core.

Lemma (Sunflower): Let \mathcal{T} be a collection of non-empty sets each of size at most ℓ . If \mathcal{T} contains more than $\ell!(p-1)^{\ell}$ sets, then it contains a sunflower with p petals.

Intuitively, this means that large collections of small sets have sunflowers.

Proof: We will prove this lemma by induction on ℓ .

For the base case, if $\ell = 1$, then all sets must contain only one element. If $|\mathcal{T}| > \ell! (p-1)^{\ell} = p-1$, then we can choose any p sets in \mathcal{T} . This is a sunflower with the empty set as its core.

a sunflower with no core

 $^{^{1}}$ Here, we recklessly call the sets in the sunflower petals, even though real sunflower cores aren't considered to be part of their petals.

Now, let's show the inductive step. Let $\ell \geq 2$. Suppose that we know that the lemma holds for $\ell - 1$. Let's take a maximal family² of pairwise disjoint sets in \mathcal{T} . Let the sets in the family be called X_1, \ldots, X_t and let $X = X_1 \cup \cdots \cup X_t$.

If $t \ge p$, then we are done because any p sets from our family form a sunflower with an empty core. If t < p, then we can see that

$$|X| = \sum_{i=0}^{t} |X_i| \le \sum_{i=0}^{t} \ell = \ell(p-1).$$

Since our family is maximal, every set in \mathcal{T} must intersect with X (otherwise we would be able to add it to the collection). There are more than $\ell!(p-1)^{\ell}$ sets in \mathcal{T} and only $\ell(p-1)$ points in X, by the pigeonhole principle, there exists some point $x \in X$ that is contained in at least

$$\frac{|\mathcal{T}|}{|X|} \ge \frac{\ell!(p-1)^{\ell}}{\ell(p-1)} = (\ell-1)!(p-1)^{\ell-1}$$

of the sets in \mathcal{T} . If we remove x from all of the sets containing it, then those sets form a collection on which we can use our inductive hypothesis. More formally, if we take the set

$$\mathcal{T}' = \{ S \setminus \{ x \} \colon S \in \mathcal{T}, x \in S \},\$$

then all sets in \mathcal{T}' have at most $\ell - 1$ elements, so by the inductive hypothesis, there is a sunflower with p petals in \mathcal{T}' .

If we add x back to all of the sets in this sunflower, then we still have a sunflower with p petals, but now all sets are in \mathcal{T} . This is what we wanted to prove existed, so we are done.

 $^{^{2}}$ Here, maximal means that it's impossible to add another set to our family while maintaining the property that all sets are pairwise disjoint.