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Introduction
Recall the circuit method of computation, where for each input length n we construct a circuit of OR, AND,
and NOT gates on n bits of input. We measure the circuit complexity of a function by the smallest number
of gates we need to compute the function using a circuit.

Here, we will look at a special subset of circuits called monotone circuits. We will prove a lowerbound on
monotone circuits (i.e. monotone circuits are weak in some sense).

Definition 1: A circuit that has only OR and AND gates is called a monotone circuit. We will also restrict
ourselves to a maximum fan-in of 2. /

Monotone circuits can’t compute every function. For example, any circuit computing XOR needs a NOT
gate. So, we introduce the following notation.

Definition 2: Let x, y ∈ {0, 1}n. We say x � y if every bit that’s 1 in x is also 1 in y. A function
f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) when x � y. /

Intuitively, this means that the value of f never decreases as we flip 0s to 1s in the input. In any monotone
circuit, changing a 0 to a 1 in the input can never make any gate switch from 1 to 0, so the function it
computes is monotone. For any monotone function, we can create a circuit that computes it by taking an
OR of ANDs where each AND corresponds to an accepted input1. No extra inputs will be accepted because
the function is monotone.

1To make the fan-in be 2, we can expand all AND and OR gates into several fan-in 2 AND and OR gates.
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So, monotone functions are exactly the functions that monotone circuits can compute. However, the circuits
we create for some functions in that way can be very large (where large means lots of gates). How small can
we make these circuits if we try harder? We will approach this question by examining a specific monotone
function (Clique) and show that there is no way to construct a small monotone circuit for it.

Definition 3: Let Cliquek,n : {0, 1}(
n
2) → {0, 1} be the function that takes as input an adjacency matrix

for an n-vertex graph and outputs 1 if and only if the graph contains a k-clique (a fully connected subgraph
of size k). /

Note that this function is monotone because adding an edge to a graph cannot destroy an existing clique.
We must be careful when computing the complexity of this function in terms of input size because the input
size is

(
n
2

)
and not n. However, we know

(
n
2

)
≤ n2 and we’ll see that our bound is strong enough for this

difference to not matter. We will prove that the monotone circuit complexity of this function is exponential
in k (as long as k isn’t too big in comparison to n).

Theorem 1: There exists an ε > 0 such that for large enough n and k where k ≤ n1/4, any monotone

circuit computing Cliquek,n has size at least nε
√
k. /

In other words, the monotone circuit complexity of Cliquek,n is nΩ(
√
k). This was first proved by Razborov

in 1985 and two years later by Alon and Boppana. Note that if we let k = n1/4, then this bound becomes

nΩ(n1/8) ≥ 2Ω(n1/8), so this bound is, in fact, exponential2 in n.

We can see that if we were able to prove a similar statement but for general circuits and not just monotone
ones, then we have found a language in NP that isn’t in P/poly. In fact, the original motivation for proving
lower bounds on monotone circuits was a hope that we could show that any problem that’s hard for monotone
circuits is also hard for general circuits. If that were true, we would be able to prove that NP * P/poly.
Unfortunately this hope was crushed by the Tardos function, which is computable in polynomial time on
normal circuits, but is exponentially hard for monotone circuits.

Yes, No, Indicators, and Approximators
Before we can approach the proof Theorem 1, we must define some tools we will use. First let’s define the
Yes and No type of graphs.

Definition 4: Let an n-vertex graph be called a Yesk,n graph if it has a k-clique somewhere and no other
edges. Let the collection of Yes graphs be called Yk,n. /

Intuitively, these are the sparsest graphs that still have a clique.

2Also note that any unbounded fan-in circuit can be turned into a fan-in of 2 circuit with only a linear expansion in size
because the maximum fan-in of a circuit is no more than its size and it’s possible to replace an unbounded gate of fan-in t with
t− 1 gates of fan-in 2. Since the bound we are proving is exponential, it also works for unbounded fan-in circuits.
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Definition 5: Let an n-vertex graph be called a Nok,n graph if it is formed by coloring the n vertices with
k − 1 colors and then connecting vertices of different colors. Although two different colorings can produce
the same graph, we will consider them different to simplify our counting later. Let the collection of Nok,n
graphs along with their colorings be called Nk,n. /

For any coloring and any group of k vertices, there are at least two that are the same color by the pigeonhole
principle, which won’t have an edge between them. So there are no k-cliques in Nok,n graphs. Intuitively,
there are many edges in most No graphs3, so No graphs are very dense graphs without a clique.

Note that we will sometimes drop the k, n subscripts in our notation to keep our proofs clean.

Next, we define a special kind of circuit.

Definition 6: Let X be a subset of [n]. The function that outputs 1 if and only if the input graph has a
clique on the set X is called a clique indicator over X. We denote this function by CX . /

The function CX is just the monomial

CX =
∧

i 6=j∈X

xij

where xij is the bit representing the edge between vertex i and vertex j.

These indicators are the building blocks for another kind of circuit that is the true tool we are interested in.

3Unless there happens to be a lot of one color, which is unlikely.
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Definition 7: An (m, `)-approximator is an OR of at most m clique indicators, each of which is over a set
with at most ` elements. /

We can also write an (m, `)-approximator A as

A =

r∨
t=1

CXi =

r∨
t=1

∧
i 6=j∈X

xij (r ≤ m, |Xi| ≤ `).

As the name suggests, we will use approximators to approximate circuits. The parameters m and ` represent
how large we allow the approximator to be. We will pick the specific values for these parameters later, but
intuitively, we want to balance them. If they’re too big or too small, then the approximator we can construct
will be either too powerful or too weak to be useful.

Bad at Cliques, Good at Small Circuits

Razborov’s idea is to carefully pick an m and ` big enough so that we can construct a good (m, `) approxi-
mator for any small circuit, but also small enough so we can prove that any (m, `)-approximator is bad at
approximating Cliquek,n. Succeeding at this would imply that no small circuit can compute Cliquek,n,
which is our end goal.

We will restrict our attention on Yes and No graphs and prove these results on this subset of inputs specifically.
We’ll talk about how to construct the approximator for a small circuit computing Clique in detail later,
but the idea is to work from the bottom up. We start by constructing trivial (m, `)-approximators for the
input variables and then create approximators for every gate based on the approximators of the two gates it
relies on.
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Approximators are Bad at Identifying Cliques

First, let’s explore how bad (m, `)-approximators are at identifying cliques on Yes and No graphs. Intuitively,
if ` is small compared to k, then the indicators in our approximator are small. Since Nok,n graphs are dense,
it’s very likely that a randomly picked one will make an indicator return 1, so the approximator will wrongly
return 1 as well. In fact, one small indicator is enough to make the approximator fail on many No graphs.

On the other hand, if ` is large compared to k and all of the indicators are over large sets, then it’s likely
that a random Yesk,n graph will be unrecognized by all of the indicators, so the approximator will wrongly
return 0. So, approximators are just generally bad at identifying cliques.

When we construct our approximator for small circuits, we will set ` to be relatively small, so we don’t need
the second statement. So, we will only prove the case for small `, but it is a good exercise to formalize the
second statement as well.

Lemma 1: Every (m, `)-approximator either rejects all graphs or wrongly accepts at least a 1− `2/(k − 1)
fraction of all (k − 1)n graphs with colorings from N . /

Proof (Lemma 1): If an (m, `)-approximator accepts at least one graph, then it contains at least one
clique indicator. Let’s look at how one indicator CX performs on No graph inputs.

A No graph and coloring are rejected if the subgraph on X isn’t a clique. This is true if and only if two
vertices in X are colored the same. There are

(|X|
2

)
pairs of vertices in X. For each pair, there are (k−1)n−1

colorings that assign both vertices in the pair the same color4. So, the total number of colorings where two
vertices in X are the same color is at most

(|X|
2

)
· (k − 1)n−1. Since |X| ≤ `, we can bound it by(

|X|
2

)
· (k − 1)n−1 ≤

(
`

2

)
· (k − 1)n−1 ≤ `2 · (k − 1)n−1.

So, at most `2 · (k − 1)n−1 inputs from N are rejected. Since there are a total of (k − 1)n graphs with
colorings in N , the fraction of accepted graphs is at least

1− `2 · (k − 1)n−1

(k − 1)n
= 1− `2

k − 1
.

Since the approximator is an OR of indicators, the approximator accepts at least as many No graphs.

Sunflowers in our Toolbox

In our construction, we will see that we will need to somehow decrease the number of clique indicators in an
approximator. We will see that the Sunflower Lemma will be an incredibly useful tool here. This is a purely
combinatorial result discovered by Erdös and Rado in 1960.

4This is because we can consider the pair as one element, so we have k − 1 options for n− 1 elements to color.
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Definition 8: A collection of sets {Z1, . . . , Zp} is called a sunflower if there exists a set Z (which we call
the core) such that for any i 6= j, we have Zi ∩ Zj = Z. The sets Zi are called the petals of the sunflower5.
Equivalently, every element either belongs to none, one, or all of the sets in the collection. /

Note that a collection where all sets are disjoint from each other is also a sunflower with an empty core.

Lemma 2 (Sunflower): Let T be a collection of non-empty sets each of size at most `. If T contains more
than `!(p− 1)` sets, then it contains a sunflower with p petals. /

Intuitively, this means that large collections of small sets have sunflowers.

Proof (Lemma 2): We will prove this lemma by induction on `.

For the base case, if ` = 1, then all sets must contain only one element. If |T | > `!(p− 1)` = p− 1, then we
can choose any p sets in T . This is a sunflower with the empty set as its core.

5Here, we recklessly call the sets in the sunflower petals, even though real sunflower cores aren’t considered to be part of
their petals.
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Now, let’s show the inductive step. Let ` ≥ 2. Suppose that we know that the lemma holds for `− 1. Let’s
take a maximal family6 of pairwise disjoint sets in T . Let the sets in the family be called X1, . . . , Xt and let
X = X1 ∪ · · · ∪Xt.

If t ≥ p, then we are done because any p sets from our family form a sunflower with an empty core.

If t < p, then we can see that

|X| =
t∑

i=0

|Xi| ≤
t∑

i=0

` = `(p− 1).

Since our family is maximal, every set in T must intersect with X (otherwise we would be able to add it to
the collection). There are more than `!(p − 1)` sets in T and only `(p − 1) points in X, by the pigeonhole
principle, there exists some point x ∈ X that is contained in at least

|T |
|X|
≥ `!(p− 1)`

`(p− 1)
= (`− 1)!(p− 1)`−1

of the sets in T . If we remove x from all of the sets containing it, then those sets form a collection on which
we can use our inductive hypothesis. More formally, if we take the set

T ′ = {S \ {x} : S ∈ T , x ∈ S},

then all sets in T ′ have at most ` − 1 elements, so by the inductive hypothesis, there is a sunflower with p
petals in T ′.

If we add x back to all of the sets in this sunflower, then we still have a sunflower with p petals, but now all
sets are in T . This is what we wanted to prove existed, so we are done.

6Here, maximal means that it’s impossible to add another set to our family while maintaining the property that all sets are
pairwise disjoint.
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Small Circuits Have Good Approximators

Now, let’s dive into the actual construction of our approximator. As mentioned earlier, we assume that there
is a small monotone circuit computing Cliquek,n and construct an (m, `)-approximator that approximates
this circuit well on Yes and No graphs. For each gate in the circuit, we will build an (m, `)-approximator for
the function it computes.

Let F be a monotone circuit of size s that computes Cliquek,n. Let us order the gates of F in a way that
parent gates always come after their children. Then we can consider the sequence of functions f1, f2, . . . fs
where fi is the function computed by the ith gate. So, fs = Cliquek,n and each fi is either an OR or an
AND of variables or functions that come before fi in the sequence.

We can define the approximator for the input variable xij to simply be C{i,j}. Then, for each i, if fi is an
OR of two functions (or input variable), then we let the approximator for fi be AtB where A and B are the
approximators for the two child functions of fi. If fi is an AND of two functions (or input variable), then
we let the approximator for fi be A u B where A and B are the approximators for the two child functions
of fi.

We haven’t yet defined what the t and u are, so let’s explore what they should be.

Taking the OR

Let’s start with the t operator. We have two (m, `)-approximators,

A =
∨
i

CAi
and B =

∨
i

CBi
,

and our goal is to create an (m, `)-approximator for the OR of the two. It would be nice if our new
approximator could simply be ∨

i

CAi

∨
i

CBi
.

This is an approximator, but the number of indicators it is made up of can be as high as 2m. So, we somehow
need to go from a (2m, `) approximator back to an (m, `)-approximator.

This is where the Sunflower Lemma comes to save us. We will show that if we have an OR of a bunch of
indicators whose sets that form a sunflower, then we can replace all of these by just an indicator for the core
without too big of an error.

8



Monotone Circuits Struggle with Cliques May 17th 2021

So, as long as we have enough sets for the condition of the Sunflower Lemma, we can repeatedly replace
sunflowers with their cores to reduce the number of indicators in our approximator. Namely, if we set
m := `!(p− 1)` for some p, then we can repeatedly decrease the number of indicators by p− 1 until we have
no more than m indicators in our approximator total. We call this process plucking. With this method, we
have created an (m, `)-indicator that approximates an OR of two other (m, `)-indicators. We will prove that
the approximation is good enough for our purposes later. Also, now that we have expressed m through this
new parameter p, we will be carefully selecting p later instead of selecting m. We summarize this idea with
the following definition.

Definition 9: Given two (m, `)-approximators A and B, we define A t B to be the (m, `)-approximator
created by taking the OR of all indicators in either A or B and then plucking sunflowers until the number
of indicators is no more than m. /

Taking the AND

Now, let’s think about the AND case. Again, we have two (m, `)-approximators,

A =
∨
i

CAi
and B =

∨
i

CBi
,

and our goal is to create an (m, `)-approximator for the OR of the two. In an ideal world, we would want
an (m, `)-approximator that computes A ∧B, which can be expanded to

A ∧B =

∨
i

CAi

 ∧
∨

i

CBi

 =
∨
i6=j

(
CAi ∧ CBj

)
.

Unfortunately, there are several reasons why this isn’t an (m, `)-approximator. First, this isn’t actually an
OR of clique indicators. To deal with this, we can approximate CAi ∧ CBj with CAi∪Bj . So, we can write

A ∧B ≈
∨
i 6=j

CAi∪Bj
,

which is indeed an OR of clique indicators.
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Now we encounter the problem that Ai∪Bj might be a set of size more than `, so our indicators are too big.
To handle this, we can simply throw out all indicators that are over a set that has more than ` elements.
Like in the OR case, we may also end up with too many of these indicators in our OR (up to m2, in fact),
but we can use the exact same plucking method to reduce this number back to at most m. Our result is
now guaranteed to be an (m, `)-approximator. We can summarize the AND construction with the following
definition.

Definition 10: Given two (m, `)-approximators A and B, we define A u B to be the (m, `)-approximator
created by taking the OR of clique indicators for all possible unions of an indicator set from A with an
indicator set from B, then removing the indicators over sets with more than ` elements, and finally plucking
sunflowers until the number of indicators is no more than m. /

So, we now know how to build our way up the gates of F and construct an approximator for all fi, including
fs = Cliquek,n. Our construction guarantees that the result is an (m, `)-approximator, but we still need to
prove that the approximation is good on inputs from Y and N . To do this, we will show that the number
of Yes and No graphs that are misinterpreted at each construction step is small, and then take the union
bound to get the maximum error of the final approximator in terms of s, n, k, `, and p. This combined with
Lemma 1 will allow us to choose ` and p to give a lower bound for s.

Good at Saying Yes

First, we see how good our final approximator is at handling Yes graphs. Let’s denote the final (m, `)
approximator for fs by F̊ .

Lemma 3: The number of Yesk,n graphs that F̊ wrongly rejects is at most

s ·m2 ·
(
n− `− 1

k − `− 1

)
.

/

Proof (Lemma 3): As mentioned earlier, we will show that at each step in the construction, the approx-
imator fi for some gate incorrectly outputs 0 on at most m2 ·

(
n−`−1
k−`−1

)
Yes graphs that were correct before

this step. Then, we’ll use the union bound to pick up the factor of s and prove the statement for the final
result.

If fi is approximating an OR gate, then any error could come only from the repeated plucking. However, we
can see that when we pluck a sunflower, we replace the indicators over all its petals by an indicator over its
core. Since the core is contained in all of the petals, a clique over a petal implies a clique over the core. So,
plucking can only add to the cases where the approximator returns 1 and no errors are introduced in this
case.

If fi is approximating an AND gate, then there are three places in the construction that could cause an
error.

The first place is when we are replacing each AND of indicators over two sets with an indicator over the
union of the two sets. However, on Yes graphs, having a clique on two sets of vertices is the same as having
a clique on the union of the two sets, no Yes graphs can be misidentified because of this.
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The second place is when we are removing all indicators over sets of more than ` vertices. For a given
indicator over a set of at least `+1 vertices, there are at most

(
n−`−1
k−`−1

)
misidentified Yes graphs7. Since there

are at most m2 indicators in out construction that we could even throw out, the total number of misidentified
Yes graphs on this step is no more than m2 ·

(
n−`−1
k−`−1

)
, which is what we wanted to show.

The last possible place for error is when we are plucking the sunflowers, but this can only help accept a Yes
graph by the same reasoning as before.

We can conclude by taking a union bound over the number of misidentified Yes graphs in each step to see
that the total number of wrongly rejected Yes graphs is at most

s ·m2 ·
(
n− `− 1

k − `− 1

)
.

Good at Saying No

Similarly, we want to bound the error of our construction on No graph inputs. So, we prove the following
lemma.

Lemma 4: The number of graphs (with colorings) from Nk,n that F̊ wrongly accepts is at most

s ·m2 · `2p · (k − 1)n−p.

/

Note that we could express m in terms of p here to reduce the number of variables, but we’ll avoid doing
that to keep our formulas a little cleaner.

Proof (Lemma 4): Similarly to how we proved Lemma 3, we will bound the number of misidentified No
graphs at each step by m2 · `2p · (k − 1)n−p and take the union bound to show the result about the final
approximator. Let’s look at the approximator fi at some step.

If fi is approximating an OR gate, let us look at a random No instance G (color the vertices randomly and
look at the resulting No graph). We want to show that each plucking only causes fi to wrongly accept a
small number of additional No graphs. Let’s look at a specific plucking. Let Z1, . . . , Zp be the petals of
the sunflower in this plucking and let Z be the core. For this plucking to cause an error, CZ must wrongly
accept G, but all CZi

should reject G. So, all vertices in Z should be colored differently but there should be
two vertices colored the same in every Zi.

Let’s examine the probability of this happening. Let’s call a set where all vertices are colored differently a
rainbow set. Then,

Pr [Z is rainbow and all Zi are not rainbow] ≤ Pr
[
All Zi are not rainbow | Z is rainbow

]
(1)

=

p∏
i=1

Pr
[
Zi is not rainbow | Z is rainbow

]
(2)

≤
p∏

i=1

Pr [Zi is not rainbow] (3)

Here, equation (2) comes from the fact that Zi are disjoint outside of Z, so the events ere independent.
Inequality (3) comes from the fact that a set is more likely to be rainbow if you’re given that part of it is
rainbow. We also know that the number of non-rainbow colorings of Zi is at most(

|Zi|
2

)
· (k − 1)n−1 ≤

(
`

2

)
· (k − 1)n−1 ≤ `2 · (k − 1)n−1

7This is because the clique of a misidentified Yes graph must contain the `+ 1 or more vertices, and there are k− `− 1 more
vertices to select out of the remaining n− `− 1.
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by the same reasoning as in Lemma 1. There are (k − 1)n colorings, so

Pr [Zi is not rainbow] ≤ `2 · (k − 1)n−1

(k − 1)n
=

`2

(k − 1)
.

Combining this with inequality (3), we have

Pr [Z is rainbow and all Zi are not rainbow] ≤

(
`2

(k − 1)

)p

= `2p · (k − 1)−p.

This means that the total number of colorings wrongly accepted because of this plucking is bounded by

`2p · (k − 1)−p · (k − 1)n = `2p · (k − 1)n−p.

Since we remove at least one extra set with each plucking, there are at most m pluckings, so taking the
union bound gives us that the number of No graphs wrongly accepted because of this step is at most
m · `2p · (k − 1)n−p.

Alternatively, if fi is approximating an AND gate, then there are the same three places where we could have
error as in Lemma 3.

First, when we are replacing each AND of indicators over two sets with an indicator over the union of the
two sets, no errors can be introduced. This is because if the union of two sets is rainbow, then the two sets
are both rainbow, so a rejection by both set indicators implies a rejection by the union indicator.

Second, removing clique indicators over sets with more than ` elements can only remove from the accepted
graphs, so this cannot cause any errors on No graphs.

Finally, plucking the sunflowers can cause errors here. We know each plucking can cause at most `2p·(k−1)n−p

errors, and there are at most m2 pluckings, so the number of errors in this step is at most m2 ·`2p ·(k−1)n−p.

In either case, the number of wrongly accepted No inputs because of fi is no more than m2 · `2p · (k− 1)n−p.
So, we can take the union bound over all i to conclude that the total number of No inputs F̊ wrongly accepts
is at most s ·m2 · `2p · (k − 1)n−p.

Conclusion
Now, we are prepared to arrive at the main result. To review, we have shown that for any monotone
circuit computing Cliquek,n, we can construct an (m, `)-approximator F̊ that does well on Yes and No
graphs relative to the size of the circuit (Lemmas 3 and 4). We have also shown that (m, `)-approximators,
including F̊ , either reject all graphs, or are bad at identifying No graphs (Lemma 1). Rejecting all graphs
would mean the approximator is bad at identifying Yes graphs. To be able to meet this error, the size of the
circuit must be large.

Let’s formalize this statement and prove our goal.
Proof (Theorem 1): Let F be a monotone circuit computing Cliquek,n with size s. Let ` = b

√
k − 1/2c,

let p = b
√
k log2 nc, and let m = `!(p− 1)`.

We can build a good (m, `)-approximator F̊ for the circuit by the process we developed. By Lemma 1, F̊
either rejects all graphs or wrongly accepts at least 1− `2/(k− 1) ≥ 1/2 of graphs (with colorings) from N .
Let’s consider these two cases separately.

Case 1 (F̊ rejects all graphs): Here, we can use Lemma 3 to bound s. There are
(
n
k

)
Yesk,n graphs and all

of them must be rejected. However, by Lemma 3, at most s ·m2 ·
(
n−`−1
k−`−1

)
Yesk,n graphs are rejected. So,

s ·m2 ·
(
n− `− 1

k − `− 1

)
≥
(
n

k

)
.

With some rearrangement and computations, it’s possible to get from this that s = nΩ(
√
k). The computation

is simple, but tedious and space-consuming, so we defer it until after the proof.
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Case 2 (F̊ is wrong on half of No graphs): In this case, we have a similar idea. Half of Nok,n graphs are
wrongly accepted, but by Lemma 4, at most s ·m2 · `2p · (k − 1)n−p of the No graphs are accepted. There
are a total of (k − 1)n Nok,n graphs, so,

s ·m2 · `2p · (k − 1)n−p ≥ 1

2
· (k − 1)n.

From this, it is also possible to get that s = nΩ(
√
k).

Thus, in either case, s = nΩ(
√
k), so we are done.

Bounds for the previous proof: Let us show the calculations that we claim are true in the preceding
proof. Since both cases use m2, let us bound that first.

m2 = (`!(p− 1)`)2

≤ (``p`)2 = (`p)2` = (b
√
k − 1/2cb

√
k log2 nc)2b

√
k−1/2c

≤ (
√
k − 1/2 ·

√
k log2 n)

√
k−1

≤ (
√
k ·
√
k log2 n)

√
k = (k log2 n)

√
k

≤ (n1/4 log2 n)
√
k

≤ (n1/3)
√
k = n1/3·

√
k,

where the last inequality is only true for n greater than some constant8.

A useful tool: We will use that (
n
k

)(
n−t
k−t
) =

n!(k − t)!(n− k)!

k!(n− k)!(n− t)!

=
n!(k − t)!

k!(n− t)!

=

t−1∏
i=0

n− i

k − i

≥
t−1∏
i=0

n

k
=

(
n

k

)t

.

Case 1: We have that

s ·m2 ·
(
n− `− 1

k − `− 1

)
≥
(
n

k

)
.

8Although this constant is quite large—somewhere around 280.
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Rearranging, we have

s ≥ 1

m2
·

(
n
k

)(
n−`−1
k−`−1

)
≥ 1

m2
·
(
n

k

)`+1

≥ 1

n1/3·
√
k
·
(
n

k

)`+1

≥ 1

n1/3·
√
k
·
(

n

n1/4

)`+1

=
1

n1/3·
√
k
·
(
n3/4

)`+1

=
1

n1/3·
√
k
·
(
n3/4

)b√k−1/2c+1

≥ 1

n1/3·
√
k
·
(
n3/4

)√k−1/2

= n3/8·
√
k−1−1/3·

√
k

≥ n1/1000·
√
k,

where the last inequality holds for k larger than some constant9. So, s = nΩ(
√
k) in this case.

Case 2: We have that

s ·m2 · `2p · (k − 1)n−p ≥ 1

2
· (k − 1)n.

Rearranging, we have

s ≥ 1

m2
· 1/2 · (k − 1)p

`2p

=
1

m2
· 1/2 · (k − 1)b

√
k log2 nc

b
√
k − 1/2c2b

√
k log2 nc

≥ 1

m2
· 1/2 · (k − 1)b

√
k log2 nc

(
√
k − 1/2)2

√
k log2 n

=
1

m2
· 1/2 · (k − 1)b

√
k log2 nc

((k − 1)/4)
√
k log2 n

=
1

m2
· 1

2
· (k − 1)b

√
k log2 nc−

√
k log2 n · 4

√
k log2 n

≥ 1

m2
· 1

2
· (k − 1)−1 · 4

√
k log2 n

=
1

m2
· 1

2
· (k − 1)−1 · n2

√
k

≥ n−1/3
√
k · 1

2
· n−1/4 · n2

√
k

=
1

2
· n(2−1/3)

√
k−1/4 = nΩ(

√
k).

So, s = nΩ(
√
k) in both cases and we are done!

9About 5. With some manipulation, it’s possible to decrease these constants, but we will not do that here.
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