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1 Introduction
From our very first complexity theory course, we are trained to say that polynomial time algorithms are fast
and superpolynomial time algorithms are slow. This is nice because polynomials are a very rigid class—
they’re closed under addition, multiplication, and composition. This let’s us combine poly-time algorithms
in various ways and easily keep the result in poly-time as well. Outside of the complexity theorist’s pink
cloud of simplicity and ease, however, O(n100) algorithms look a little more grim. Even quadratic time
algorithms are frowned upon by most data workers and programmers.

In this introduction, let’s take a step towards reality and examine a poly-time problem with a finer micro-
scope. Unconditionally proving lower bounds on algorithms turns out to be incredibly difficult. In fact,
there are no known techniques beyond the standard O(n log n) comparison bounds. Instead, we will look at
a technique to prove stronger bounds conditionally. We’ll assume a statement that is likely to be true, and
we’ll use it to show the lower bound that we want.

The assumption we make here is the Strong Exponential Time Hypothesis, or SETH for short. This is just
a stronger version of P 6= NP. Let’s examine it more closely.

2 Who Are You, SETH?
Before we approach SETH himself, let’s recall his little brother, ETH.

Definition 1: Let sk be the infimum of all real numbers δ such that k−SAT is solvable in O(2δn) time.
The Exponential Time Hypothesis (ETH) is the statement that there exists a k such that sk > 0. /

We saw this earlier as the statement that k−SAT requires exponential time. The sk parameter here is intu-
itively “how brute force” the algorithm to solve k−SAT must be, with 0 meaning k−SAT is subexponential
and 1 meaning that brute force is the best algorithm there is.

Now that we got a nibble of the idea, let’s bite into the definition we are after.

Definition 2: Let sk be as in the previous definition. The Strong Exponential Time Hypothesis (SETH) is
the statement that limk→∞ sk = 1. We assume that the number of clauses is polynomial in the number of
variables. /

Intuitively, this means that brute force is essentially as good as SAT-solving algorithms get. It’s easy to see
that SETH implies ETH which implies P 6= NP. Since we are proving that SETH implies a lower bound,
disproving the lower bound would mean disproving SETH, which would be nice. The truthfulness of SETH
is debated, but it seems that most complexity theorists believe it is true.

3 Diameter of a Graph
Now, let’s look at the problem that we’ll be proving a lower bound for.

Definition 3: The diameter of a graph G is the maximum shortest path between two vertices in the graph.
If G isn’t connected, we say the diameter is infinity. The problem DIAMETER is the problem of finding the
diameter of a graph. /
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More specifically, we will work with trying to determine if a graph has a diameter of 2 or 3.

4 Hardness of Calculating the Diameter
Let’s dive into the main theorem itself.

Theorem 1: SETH implies that for any ε > 0, computing the diameter of an N -vertex, M -edge graph
takes Ω(MN1−ε) time [RW12]. /

Our strategy for proving this will be to create a reduction from SAT to DIAMETER. The reduction will
take exponential time, and the resulting graph will have exponential size. A fast algorithm to find the graph
diameter would mean a faster-than-brute-force algorithm for solving SAT. This idea of an exponential time
reduction is quite different from the basic poly-time reductions that we have been making thus far.

More precisely, our reduction will take in a Boolean formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cm and output a a graph
G such that the diameter of G is 3 if ϕ ∈ SAT and 2 if ϕ 6∈ SAT. Also, G will have N = O(2n/2) vertices
and M = O(2n/2) edges. The reduction will take O(2n/2) time.

Suppose that we can actually build this reduction. Then, if there exists an ε > 0 such that computing the
diameter takes o(MN1−ε) time, then we can solve SAT in o(2n/2 + 2n/2 · 2n/2−εn/2) = o(2n(1−ε/2)), which
falsifies SETH with δ = ε/2. The contrapositive of the previous statement is exactly the theorem we want
to prove. So, all we need to do is create the reduction and show that it works.

Interestingly, in 1999, Aingworth, Chekuri, Indyk, and Motwani presented a randomized algorithm [ACM96]that
finds the diameter of a graph with a 2/3 accuracy1. Their algorithm runs in O(MN1/2) time. This is just
barely not strong enough to tell the difference between a diameter 2 and diameter 3 graph. If their algorithm
were any more accurate than 2/3, then we would be able to disprove SETH2. So, in a sense, this lower bound
is tight.

5 Construction of the Reduction
On input formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cm with n variables, construct the graph G as follows:

1. For each clause Ci, create a vertex ci.

2. Create two vertices A and B.

3. Connect A to B, connect every pair of vertices ci, cj and connect both A and B to all vertices ci (i.e.
create a clique on all of the vertices we have so far).

1This means that the true diameter is at most a 2/3 factor away from the output.
2Although the algorithm is randomized, disproving SETH with a randomized algorithm would also be an incredible break-

through.
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4. Enumerate all possible assignments to the first n/2 of the n variables in ϕ. There are 2n/2 such
assignments. Create 2n/2 vertices α1, . . . , α2n/2 , one for each assignment.

5. Connect A to all αi.

6. Create vertices β1, . . . , β2n/2 , one for each assignment of the second half of the variables of ϕ.

7. Connect B to all βi. The graph should currently look something like this.

8. Now, let’s add the most interesting part. We’ll connect some αi’s and some βi’s to the ci’s. Namely,
let’s connect αi to cj if the assignment of the first n/2 variables corresponding to αi does not satisfy
Cj . Similarly connect βi to cj if the assignment of the second n/2 variables does not satisfy Cj . Note
that this is fast to check. Now, our finished graph G looks something like this:

With this, we have completed the construction.
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6 Proof of the Theorem
Let’s analyze the construction and convince ourselves that it works.

Proof of Theorem 1: First, we can see that building all of the vertices and connecting them takes O(2n/2)
time, so our construction is good on time.

Now let’s analyze the correctness. We see that before we added the edges in step 8, the diameter of the
graph is 3 because that’s the distance from any α vertex to any β vertex. The diameter only becomes 2 if
we connect every α to every β with a path of length 2 through some ci.

Looking more closely, if ϕ ∈ SAT, then there exists some satisfying assignment. We can look at the vertices
that correspond to the two halves of this assignment αi and βj . Every clause is satisfied either by a variable
in the first half or a variable in the second half, so no ci can be connected to both αi and βj . So, the distance
from αi to βj is 3. Thus, the diameter of G is 3.

If ϕ 6∈ SAT, then every assignment isn’t satisfying. So, for any αi and βj , there exists some clause C` that
isn’t satisfied. So, both c` is connected to both αi and βj . This means the distance between all pairs of an
α and a β is 2. So, the diameter of G is 2.

So, our reduction works! By the discussion that we had in section 1.3, this means that SETH implies that
computing the diameter of G takes MN1−ε time for any ε > 0, which is what we wanted to show.

To review, we created a reduction that showed that the Strong Exponential Time Hypothesis implies that
the algorithms we have for DIAMETER are pretty much the best possible. We used a statement about
superpolynomial time complexity to prove a statement about fine-grained complexity!
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