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1 Introduction
Expanders are graphs that are sparse and well-connected. We’ll allow for parallel edges and loop edges here.
Those terms “sparse” and “well-connected” are very vague. We’ll define what we mean by them in this paper,
but in reality every application of expanders uses a different definition of sparseness and well-connectedness.

Expanders were first studied to understand how to build efficient networks, but there are now applications
in many areas. Expanders can be used to create efficient pseudorandom generators [XZ07], they, they can
be used to create good error-correcting codes called expander codes [HOW15], and they have found a shelf
within the mathematical community.

2 Sparseness
First, let’s talk about what it means for a graph to be sparse. Our goal will be to build expanders, and
we want to be able to build them to be arbitrarily large. So, it makes sense for us to defines sparseness
as something asymptotic. We can say “our construction generates sparse graphs” instead of “this graph is
sparse”.

Definition 4: We say a collection of graphs is sparse if the number of edges in each graph is linear in the
number of vertices. /

Note that this definition is specific to this introduction. We will be more interested in a specific kind of
sparse graphs.

Definition 5: We say an undirected graph G is a max-degree-d graph if all vertices have at most d edges
coming out. Similarly, we say G is a d-regular graph if every vertex has exactly d edges coming out. /

We can see that for any constant d, every max-degree-d graph, and thus every d-regular graph, with n vertices
has at most nd/2 edges, so these graphs are indeed sparse. If we imagine our graphs to be networks of servers,
it makes sense that we don’t want to put too much pressure on one server, so there should be a maximum on
the number of connections it has. So, can see some intuition for why most expander applications people care
about are restricted to max-degree-d graphs. Plus, we’ll soon see an example that will show that without
this restriction, constructing good expanders is easy.

3 Well-Connectedness
Now, lets look at the second property we care about, well-connectedness. Before we can arrive at the
definition, we need a few preliminary definitions.

Definition 6: Let A and B be disjoint sets of vertices. We denote by E(A,B) the set of vertices that have
one endpoint in A and another endpoint in B. /

We will be specifically interested in E(S, S̄). These are the edges that “cross the border” of S. Let’s use this
notation to define conductance.

Definition 7: The conductance of a nonempty set of vertices S in a graph G = (V,E) is the ratio of the
fraction of edges with exactly one endpoint in S to the fraction of vertices in S. We denote this by

Φ(S) =
|E(S, S̄)|/|E|
|S|/|V |

.

/

For d-regular graphs, |V |/|E| is a constant, so we can throw out the |V | and the |E| and think of Φ(S) as
something proportional to the ratio of the number of edges crossing into S to the number of vertices in S.
Intuitively, Φ(S) is big if S is small, but connected to the rest of the graph well.
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From this notion, we can build a graph property.

Definition 8: Let G = (V,E) be a graph with at least two vertices. The minimum conductance of G is the
minimum of the conductances of all subsets of no more than half the vertices. This is denoted by

ΦG = min
S⊆V

0<|S|≤|V |/2

Φ(S).

/

It makes sense that we restrict ourselves to only sets of at most half the vertices because the conductance of
the entire graph is 0. A disconnected graph will have a minimum conductance of 0 because the conductance of
any connected component is 0. Any connected graph will always have a positive minimum conductance since
any nonempty S that isn’t too large will have edges coming out. We can see that the higher the minimum
conductance is, the more connected the graph feels. In fact, that’s how we’ll define well-connectedness.

Definition 9: We’ll say that a collection of graphs is well-connected if the minimum conductance is at least
0.001 for each one. /

Of course, the choice to use 0.001 is arbitrary, we really just want the minimum conductance to be Ω(1). In
a sense, any set S can “expand” well into the rest of the graph by attaching its neighbors, hence the name
expanders.

Consider the collection of star graphs, where it’s n− 1 vertices all connected to one central vertex and there
are no other edges.

We can see that this collection of graphs is sparse. The graphs are also well-connected. We can see that for
any set S of less than half the vertices, either the center vertex is in S or it isn’t. If the center is in S, then
at least half the edges are crossing into S.
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If the center is outside of S, then every vertex in S has an edge leading out of it.

In either case, the number of edges crossing S is at least the number of vertices in S, so

Φ(S) =
|E(S, S̄)|/|E|
|S|/|V |

≥ |S|/|E|
|S|/|V |

=
|V |
|E|

=
n

n− 1
≥ 0.001.

This means that ΦG ≥ 0.001, so star graphs are indeed expanders. However, star graphs have a center node
with many edges. Star graphs are not max-degree-d for any d. The problem becomes significantly more
difficult if we bound the degree of the vertices.

4 Some Examples
Now, we can look as some more examples and nonexamples of expanders. This time, we will require that
our graphs are d-regular.

First, consider 1-regular graphs. Every vertex only has one neighbor, so any 1-regular graph is simply
many disconnected 2-point, 1-edge components. These cannot be expanders because setting S to be any
disconnected component will give a conductance of 0.

Bumping d up to 2, the situation is similar. A 2-regular graph is just one or more disconnected cycles.

If there is more than one cycle, then at least one cycle has less than half the vertices. Setting S to be the
set of vertices in that cycle will give a conductance of 0, so the graph isn’t an expander. If there is only one
big cycle, then we can set S to be some half of the cycle and there are only two edges going out of S, but
the number of vertices in S grows with n, so there is no lower bound on the conductance of the graph, so
2-regular graphs aren’t expanders.
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The story changes entirely when we set d to 3. Not only do 3-regular expanders exist, but most 3 regular
graphs are expanders (i.e. a random 3-regular graph is an expander with high probability) [AS00]. The proof
of this statement isn’t complex, but it’s tedious, so we’ll leave it out. The idea is to follow the probabilistic
method.

Of course, this means that for any d ≥ 3, most d-regular graphs are expanders as well.

5 Explicit is Better
So we know that d-regular expanders exist, but the probabilistic method isn’t constructive, so we don’t know
how to build these things. In many applications, the whole point is to construct them. So, we can set our
goal to be explicitly defined expanders. Although “explicit” seems like something that doesn’t need to be
defined, not having a rigorous definition will always lead to trouble. For example, we could technically have
the following construction for expanders.

Iterate through all d-regular graphs and check if it’s an expander until you have reached one.

We know this method works because d-regular expanders exist. However, it’s not clear if we should count
this as an explicit construction. After all, it does take very long to search through all expanders. So, let’s
define explicit formally.

Definition 10: A construction of a graph is explicit if there exists a poly-time algorithm that constructs
the adjacency matrix of the graph we want. /

Note that the is poly-time in n. We can similarly define a stronger condition.

Definition 11: A construction of a graph is strongly explicit if there is a polytime algorithm that takes in
a vertex and an n as input and outputs all of its neighbors. /

Note that here the algorithm is poly-time in the length of the description of a vertex and n, which is O(log n).
So, the algorithm runtime must actually be polylog(n). This essentially lets us construct the graph vertex
by vertex using these “neighbor queries”, even if the size of the graph is exponential.

6 Strongly Explicit d-regular Expanders
We now have all of the preliminaries to appreciate the Margulis-Gabber-Galil construction of strongly regular
8-regular expanders. The idea for the construction was presented by Margulis in 1973 [Mar73], and Gabber
and Galil [GG81] completed the idea in 1981. This construction only works when n is a perfect square.

Here’s the construction. Let m be a positive integer and let n = m2. Let’s create n vertices, and assign an
element of Zm × Zm to each one. Next, for every vertex (x, y), create an edge connecting it

1. to (x± y, y),

2. to (x± (y + 1), y),

3. to (x, y ± x),

4. and to (x, y ± (x + 1)).

So, there are 8 edges from every vertex. Note that if a vertex v is supposed to be connected to u, then vertex
u is supposed to be connected to v, so we don’t run into any problems with that. Here’s an example for
m = 3:
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We will not prove the correctness of this construction here. In fact, there are many different constructions
for expanders, all of which are relatively simple, but the proofs of correctness usually rely on a combination
of results from many different areas of math.

7 Related Work
One recent important result is the Zig Zag construction of expanders presented by Reingold, Vadhan, and
Widgerson in [RVW02]. The construction is not as simple—it uses an iterative technique to build big ex-
panders from constant-size small expanders. However, the analysis is simpler than of most examples. The
idea relies on a somewhat simple fact about matrices and their eigenvalues.

This result was a crucial step in proving Omer Reingold’s famous result that places Undirected ST-Connectivity
in Logspace [Rei08] in 2005.

An even more recent important result is presented by Noga Alon in 2020. He shows how to construct explicit
d-regular expanders for any d and any n. For d = p + 2, where p is a prime that is 1 mod 4, he gives a
strongly explicit construction.

The construction is a modification of already known constructions using something called Ramanujan graphs.
The analysis and proof are a complicated mix of known results from spectral graph theory [Alo20].
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