
Query Complexity of Approximating Tournament Winner
Styopa Zharkov, Bharath Namboothiry, Daniel Rebelsky, Li-Yang Tan, Moses Charikar

Stanford University Department of Computer Science

The Question:
How many games need to be played
to select an approximate winner in a
tournament?
A tournament is a complete directed graph,
where the vertices denote players and the
edges denote who beats who. Note that
cycles are okay.

How many of the tournament's edges do we
need to know (i.e. query) to select a player
whose Markov score isn't too small in
comparison to the Markov winner's score?

Main Result:
For a constant ratio, all games up to a 
constant factor must be played.
Theorem 1: In an n-player tournament, the query
complexity of finding a player with r times the
maximum Markov score is Ω(rn2).
Note that
• a tournament has O(n2) edges total, so if r is

constant as n grows, this bound is tight.
• An Ω(n) bound is easy to show, so the best

known bound is actually Ω(max(n, rn2)).

Imagine that our players are playing eternal
ping-pong where the winner stays and
the loser gets replaced by a random player.
We can define each player's score to be the
proportion of games that they win. These
are called Markov scores. The player with the
highest score is the Markov winner.

Previous Work:

Acknowledgements:

Proof Idea:

Ongoing and Future Work:

styopa@stanford.edu

Why this Model?
There are many ways to define a tournament
and many ways to measure a player's
strength. Why is our model relevant?
• Simplest definition of a tournament.
• Markov scores are resistant to small

changes in the graph
• Markov scores distinguish between

beating weak players and beating strong
players (unlike Copeland scores)

A special thanks to my advisors Li-Yang Tan
and Moses Charikar for their support
throughout the project, Victor Kleptsin for
some helpful discussions, and the CURIS
program for this opportunity.

Another common measure of player strength is
the Copeland score, which is just the player's out-
degree. Our work fills the space left by the
following two results:
• Query complexity of finding the Markov 

or Copeland winner is Ω(n2) (Dey 2016)
• Query complexity of r-approximating the 

Copeland winner is Ω((rn)2) (Hulett 2019)

A cyclone is a tournament where each player beats
the next (n-1)/2 players and loses to the previous
(n-1)/2 in a circle.

The Idea: How does a potential algorithm preform 
on δ-flipped cyclones?
Theorem 1 follows from the following lemmas:
1. With the right choice of δ, the ratio between 

the Markov score of any non-strong player and 
that of the strong player is less than r.

2. Any algorithm can't determine the strong 
player without querying Ω(rn2) edges.

• The current proof of the first lemma uses an
ugly analysis of Q's spectral gap, so we are
working on a nicer proof through Fourier
decomposition.

• Is our bound tight for non-constant r?
• What if we allow randomized algorithms?
• What if we look at the average over

some distribution of tournaments instead of
worst-case?

• Can this result be applied in a statement
about general Markov processes?We can equivalently define Markov scores

through a random process on the tournament.
The Markov transition matrix is

Q = (G + Co)/(n-1),
where G is the graph's adjacency matrix and Co is
a diagonal matrix where Coi,i is player
i's Copeland score. Then the unique distribution
p, where

Qp = p,
is the stationary distribution. Player i's score is pi.

A δ-flipped cyclone is constructed by taking
a cyclone, selecting a vertex, and flipping
any δn of its in-edges. The selected vertex is
called the strong player of this tournament.

Another look at Markov Scores:


