The Question:

How many games need to be played

 to select an approximate winner in a tournament?A tournament is a complete directed graph, where the vertices denote players and the edges denote who beats who. Note that cycles are okay.

Imagine that our players are playing eternal ping-pong where the winner stays and the loser gets replaced by a random player. We can define each player's score to be the proportion of games that they win. These are called Markov scores. The player with the highest score is the Markov winner.

How many of the tournament's edges do we need to know (i.e. query) to select a player whose Markov score isn't too small in comparison to the Markov winner's score?

Main Result:

For a constant ratio, all games up to a

constant factor must be played.

Theorem 1: In an n-player tournament, the query complexity of finding a player with r times the maximum Markov score is $\Omega\left(r n^{2}\right)$.
Note that

- a tournament has $O\left(n^{2}\right)$ edges total, so if r is constant as n grows, this bound is tight.
- An $\Omega(n)$ bound is easy to show, so the best known bound is actually $\Omega\left(\max \left(n, r n^{2}\right)\right.$).

Previous Work:

Another common measure of player strength is the Copeland score, which is just the player's outdegree. Our work fills the space left by the following two results:

- Query complexity of finding the Markov or Copeland winner is $\Omega\left(n^{2}\right)$ (Dey 2016)
- Query complexity of r-approximating the Copeland winner is $\Omega\left((r n)^{2}\right)$ (Hulett 2019)

	Copeland	Markor
finding	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
r-approx.	$\Theta\left(\max (1, r n)^{2}\right)$	$\Omega\left(\max \left(n, r n^{2}\right)\right)$

Another look at Markov Scores:

We can equivalently define Markov scores through a random process on the tournament. The Markov transition matrix is

$$
Q=(G+C o) /(n-1),
$$

where G is the graph's adjacency matrix and $C o$ is a diagonal matrix where $\mathrm{Co}_{i, i}$ is player i 's Copeland score. Then the unique distribution p, where
$Q p=p$,
is the stationary distribution. Player i 's score is p_{i}.

Proof Idea:

A cyclone is a tournament where each player beats the next ($n-1$)/2 players and loses to the previous $(n-1) / 2$ in a circle.

A δ-flipped cyclone is constructed by taking a cyclone, selecting a vertex, and flipping any $\lfloor\delta n\rfloor$ of its in-edges. The selected vertex is called the strong player of this tournament.

The Idea: How does a potential algorithm preform on δ-flipped cyclones?
Theorem 1 follows from the following lemmas:

1. With the right choice of δ, the ratio between
the Markov score of any non-strong player and
that of the strong player is less than r.
2. Any algorithm can't determine the strong player without querying $\Omega\left(r n^{2}\right)$ edges.

Why this Model?

There are many ways to define a tournament and many ways to measure a player's strength. Why is our model relevant?

- Simplest definition of a tournament.
- Markov scores are resistant to small changes in the graph
- Markov scores distinguish between beating weak players and beating strong players (unlike Copeland scores)

Ongoing and Future Work:

- The current proof of the first lemma uses an ugly analysis of Q 's spectral gap, so we are working on a nicer proof through Fourier decomposition.
- Is our bound tight for non-constant r ?
- What if we allow randomized algorithms?
- What if we look at the average over some distribution of tournaments instead of worst-case?
- Can this result be applied in a statement about general Markov processes?

Acknowledgements:

A special thanks to my advisors Li-Yang Tan and Moses Charikar for their support throughout the project, Victor Kleptsin for some helpful discussions, and the CURIS program for this opportunity.

